Developing a framework for school level data complex analysis to improve student achievements

Pavels Pestovs, University of Latvia pavels.pestovs@lu.lv Dace Namsone, University of Latvia dace.namsone@lu.lv

Introduction

Organisation learning capability and seeking the most effective solution in long term will be the one factors which will determine the sustainable competitive advantage.

Research questions

- 1.What is the theoretical framework for school level data complex analysis to improve students' achievements?
- 2.What are the results of piloting the framework in school practice?

Theoretical Background

Student Level

T. Nilsen and J.-E. Gustafsson, Eds., Teacher Quality, Instructional Quality and Student Outcomes: Relationships Across Countries, Cohorts and Time, vol. 2. Cham: Springer International Publishing, 2016.

Theoretical framework for school level data complex analysis to improve students' achievements

Methodology

Authors have developed the framework to organise and analyse the assessment data according to Math, Language and Science subject subcomponents. For the identification of the level of complexity of item, Structure of Observed Learning Outcomes (SOLO) taxonomy has been used

Subject	Subject subcomponents	SOLO level of complexity					
			IIA	IIB		IV	
Mathematics	Model/formulate						
	Transform/manipulate						
	Infare/draw conclusions						
	Communicate						
Scientific	Explain phenomena scientifically						
	Interpret data and evidence scientifically						
	Evaluate and design scientific enquiry						
Language	Language conventions						
	Retrieve explicitly stated information						
	Interpret and integrate ideas and						
	information						
	Communicate						

P. Pestovs, D. Namsone, L. Čakāne, and I. Saleniece, 'ALIGNMENT OF 6TH GRADE LARGE-SCALE ASSESSMENT CONSTRUCTS WITH THE REVISED CURRICULUM FRAMEWORK', SOCIETY. INTEGRATION. EDUCATION. Proceedings of the International Scientific Conference, vol. 2, p. 387, May 2019, doi: 10.17770/sie2019vol2.3811.

Methodology

Teacher performance assessment at school level has been organized and reported, using Bertule, Dudareva, Cakane, Namsone & Butkevica developed criteria framework and performance assessment level descriptors for teaching 21st century skills at scale 1-4

Category II 1		II 2	II 3		
	Planning	Teaching	Classroom environment		
IA 1 Self-Regulated 1.Learing goals		6.2. Feedback			
learning I					
IA 1 Self-Regulated		1.2. Metacognitive skills	5.3. Differentiation,		
Learning II			personalization		
IA 2 Cognitive Activation	2.1. Learning tasks for	2.2. Classroom			
	cognitive activation	discourse			
IB 5 Teacher techniques,	5.1. Lesson design	5.2. Teaching			
teacher basic skills		Techniques			
IB 6	6.1. Curriculum				

D. Bertule, I. Dudareva, D. Namsone, L. Čakāne, and A. Butkēviča, 'Framework of Teacher Performance Assessment to Support Teaching 21st Century Skills', Submitted for Proceedings for INTED, 2019.

Methodology

Saleniece, Namsone, Cakane & Butkevica have developed context specific school leadership practices framework, identifying categories, criteria and performance descriptors according to the four different levels

No.	Category	Criteria
1.	Facilitating a hig	gh-quality learning experience for students
1.1.		Learning organization
1.2.		Student differentiation
1.3.		High quality collaboration with family
1.4.		Safe environment
2.	Building profess	sional teacher capacity
2.1.		Goal operationalization
2.2.		Learning leadership
2.3.		Personalized professional development
3.	Facilitating the l	high-quality teacher collaboration
3.1.		Teacher collaboration management
4.	Establishing and	conveying the vision, goal and mission
4.1.		Goal
4.2.		Values
4.3.		Leadership team

University of Latvia *et al.*, 'Towards a Context-Specific School Leadership Competence Framework: a Case Study of Latvia', in *Innovations, Technologies and Research in Education, 2019*, 2019, pp. 483–497, doi: 10.22364/atee.2019.itre.35.

Conclusions

The framework covers such aspects student achievement, teacher performance and leadership practices, using national level student assessment data in the 3rd and 6th grade, student surveys, teacher observation, and leadership team interviews.

Authors arrive at the conclusion that the developed framework increases the likelihood of schools being able to use data in a purposeful and effective way and design an action plan for student achievement improvement, analysing the patterns between teacher performance, student achievement and leadership practices

In the case study analysis, using framework, example shows that defining the school goal as student high order skill development, but not operationalizing to teacher level, lesson observations shows low performance at this category, this results in low student achievement in SOLO III level of complexity in Science and Maths.

Limitations

Authors point out that, there have been not identified assessment items in all subject subcategories and different SOLO levels of complexity. Some subject subcomponents consist of only several assessment items, which lowers the reliability of results.

Pavels Pestovs pavels.pestovs@lu.lv

Dace Namsone dace.namsone@lu.lv

